
LODI PWS ID NJ0231001

PASSAIC VALLEY WATER COMMISSION 2014 Water Quality Report Issued May 2015

Passaic Valley Water Commission (PVWC) is pleased to provide our customers in Lodi with this annual Water Quality Report. PVWC is a public drinking water supplier owned by the cities of Paterson, Clifton and Passaic, and also owns and operates the Alan C. Levine Little Falls Water Treatment Plant (WTP). For a majority of PVWC customers finished water from the Little Falls WTP is blended with finished water obtained from North Jersey District Water Supply Commission's (NJDWSC) Wanaque WTP. After treatment the finished water is then pumped through underground pipes to the cities of Paterson, Clifton, Passaic, Prospect Park, Lodi, North Arlington, a section of Woodland Park and to over 22 wholesale customers in Passaic, Bergen, Essex, Hudson and Morris Counties. Emergency interconnections with other water purveyors exist throughout the distribution system.

PVWC holds monthly open public meetings. For dates, times and locations of these meetings, or for additional copies of this report call our Customer Service Department at 973-340-4300.

1630 9000 00000

ANNUAL WATER QUALITY REPORT

PVWC is required to distribute an annual Water Quality Report, or Consumer Confidence Report, to each customer as a result of amendments made in 1996 to the Safe Drinking Water Act. This report provides a summary of information collected during the calendar year 2014 regarding compliance monitoring required by both the United States Environmental Protection Agency (EPA) and the New Jersey Department of Environmental Protection (NJDEP), as well as additional water quality monitoring data.

The quality of the water delivered to your service area is represented by the combined data sets provided for PVWC's Little Falls WTP, NJDWSC's Wanaque WTP, United Water-NJ's Haworth WTP, Jersey City's WTP and in the Lodi distribution system. Water from United Water-NJ and Jersey City was used to supplement the water supply in the Lodi system during parts of 2014. Chlorine (sodium hypochlorite) is the residual disinfectant for the Little Falls WTP, Wanaque WTP, and Jersey City WTP, and chloramines are used as the residual disinfectant for the United Water-NJ's Haworth WTP. Lodi's water met all primary health-based standards in 2014, with one exception which is discussed later in this report.

SOURCE WATER

PVWC withdraws water from the Passaic River in Totowa, New Jersey and treats it at the Little Falls WTP. In the event of water quality issues in the Passaic River, PVWC can also withdraw water from either the Pompton River or the Point View Reservoir (which is filled from the Ramapo River). A water quality monitoring station is operated by the U.S. Geological Survey on the Passaic River shortly upstream of the Little Falls WTP intake and just downstream of the Passaic River's confluence with the Pompton River. This monitoring station provides continuous data for important water quality parameters, and helps provide advanced warning of adverse changes in water quality. PVWC also conducts a surface water monitoring program at various stream and river locations throughout the Passaic River watershed.

SOURCE WATER ASSESSMENT

NJDEP has prepared Source Water Assessment reports and summaries for all public water systems. The Source Water Assessment for the PVWC system (PWS ID 1605002), NJDWSC system (PWS ID 1613001), United Water-NJ system (PWS ID 0238001), and Jersey City system (PWS ID 0906001) can be obtained by accessing NJDEP's source water assessment web site at http://www.state.nj.us/dep/swap or by contacting NJDEP's Bureau of Safe Drinking Water at 609-292-5550. If a system is rated highly susceptible for a contamination category, it does not mean a customer is – or will be – consuming contaminated water. The rating reflects the <u>potential</u> for contamination of a source water, not the existence of contamination. Public water systems are required to monitor for regulated contaminants and to install treatment if any of those contaminants are detected at frequencies and concentrations above allowable levels. The source water assessments performed on the intakes for each system list the following susceptibility ratings for a variety of contaminants that may be present in source waters:

Intake Susceptibility Ratings	Pathogens	Nutrients	Pesticides	Volatile Organic Compounds	Inorganic Contaminants	Radionuclides	Radon	Disinfection Byproduct Precursors
PVWC 4 Surface Water	4-High	4-High	1- Medium, 3-Low	4-Medium	4-High	4-Low	4-Low	4-High
NJDWSC 5 Surface Water	5-High	5-High	2- Medium, 3-Low	5-Medium	5-High	5-Low	5-Low	5-High
United Water-NJ 6 Surface Water	6-High	2-High 4-Medium	1-Medium 5-Low	2-High 3-Medium 1-Low	5-High 1-Medium	6-Low	6-Low	6-High
Jersey City 1 Surface Water	High	Medium	Low	Medium	Medium	Low	Low	High

WATER TREATMENT

The Little Falls WTP is a multiple-stage advanced-technology treatment system designed and operated to provide a high degree of disinfection (for pathogenic microorganisms that can cause disease), removal of a variety of potential chemical contaminants, and treatment for aesthetic concerns such as taste, odor, and color. The treatment system uses four primary means for dealing with these contaminants, including two particle removal systems (high-rate sand-ballasted coagulation/flocculation/sedimentation, and filtration with granular activated carbon and sand) and two chemical disinfection systems (primary disinfection with ozone, and residual disinfection with chlorine).

The treatment system is designed and operated to handle the various different types of water quality contaminants that may be present in a highly-developed watershed such as the Passaic River basin. The system underwent an \$80 million upgrade during the past decade, including addition of the high-rate sedimentation process and ozone disinfection. Fluoride is not added to the water, but there are low levels present naturally (fluoride is a natural mineral).

The NJDWSC's Wanaque WTP draws its water from the Wanaque Reservoir in Wanaque, New Jersey. The water treatment plant uses conventional treatment comprised of coagulation/flocculation/sedimentation, gravity filtration through sand and anthracite, and chlorine disinfection.

WATER QUALITY LABORATORY

PVWC operates an onsite advanced water quality laboratory. The laboratory is staffed with highly trained, degreed professionals and is certified by the NJDEP to conduct a wide variety of microbiological and chemical analyses. The laboratory provides sampling, monitoring and analytical testing services for the Little Falls WTP, PVWC drinking water reservoirs, PVWC's watershed monitoring program, and all the PVWC distribution systems in Passaic and Bergen Counties. Its mission is to help ensure that our customers' water quality is consistently high and that compliance with all Federal and State regulations for drinking water is met. Of particular concern is ensuring the bacteriological and chemical quality of the water is maintained while it is delivered to the customers. The laboratory also provides sampling and testing services to other water systems, many of whom purchase PVWC water for distribution to their communities.

INFORMATION ABOUT DRINKING WATER CONTAMINANTS

SOURCE OF CONTAMINANTS FOR TAP AND BOTTLED WATER

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline 800-426-4791. The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water which must provide the same protection for public health as the EPA regulations.

SPECIAL CONSIDERATIONS REGARDING CHILDREN, PREGNANT WOMEN, NURSING MOTHERS AND OTHERS

Children may receive a slightly higher amount of a contaminant present in the water than do adults, on a body weight basis, because they may drink a greater amount of water per pound of body weight than do adults. For this reason, reproductive or developmental effects are used for calculating a drinking water standard if these effects occur at lower levels than other health effects of concern. If there is insufficient toxicity information for a chemical (for example, lack of data on reproductive or developmental effects), an extra uncertainty factor may be incorporated into the calculation of the drinking water standard, thus making the standard more stringent, to account for additional uncertainties regarding these effects. In the cases of lead and nitrate, effects on infants and children are the health endpoints upon which the standards are based.

TECHNICAL DATA TABLES

The data presented in the tables in this Water Quality Report are from the most recent testing conducted in accordance with the regulations. The data tables present concentrations of contaminants detected at the effluent of the treatment plants and in the pipes within the distribution system, typical sources of various contaminants that may be found in drinking water, status of compliance with primary and secondary drinking water standards, and related health information if compliance was not achieved. The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. As such, some of the data, though representative, are more than one year old.

Lodi Incurred a Non-Acute Monthly Total Coliform Bacteria Maximum Contaminant Level Violation in August 2014

This event was limited to Customers on Essex Street from Riverview Avenue to the Armory at 178 Essex Street. Notification to the public in the affected area was completed within 30 days as required. Coliforms are generally not harmful themselves, and are bacteria that are naturally present in the environment and are used as an indicator that other, potentially-harmful, bacteria may be present. It is likely that the presence of coliform bacteria was due to a drop in system demand in this remote part of the distribution system which caused an increase in the age of the water, and lowered disinfectant residuals which are normally present to protect against coliform bacteria. Subsequent testing for coliform bacteria was conducted and no additional coliform bacteria were found to be present. Whenever we detect coliform bacteria in any sample, we are required to continue the analytical testing procedure to see if other bacteria of greater concern, such as *E. coli*, are present. We did not find any *E. coli* bacteria in our subsequent testing. We flushed the distribution system piping in this area and installed seasonal flushing devices to increase the disinfection residuals in the area.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

2014 Water Quality Results - Table of Detected Contaminants

LODI PWS ID NJ0231001

2014 Water Quality Resu	014 Water Quality Results - Table of Detected Contaminants LODI PWS ID NJ0231001								
WATER TREATMENT PLANT EFFLUENT RESULTS									
PRIMARY CONTAMINANTS	Compliance Achieved	MCLG	MCL	PVWC Little Falls-WTP PWS ID NJ1605002	NJDWSC Wanaque-WTP PWS ID NJ1613001	United Water-NJ Haworth-WTP PWS ID NJ0238001	Jersey City MUA Jersey City-WTP PWS ID NJ0906001	TYPICAL SOURCE	
		ARBON			Highest Result an	d Range of Results	5		
	Yes	NA	TT = 1	0.26 (0.08 - 0.26)	0.28	0.18 (0.02 - 0.18)	0.29 (0.04 - 0.29)		
Turbidity, NTU	Yes	NA	TT = percentage of samples <0.3 NTU (min 95% required)	100%	100%	100%	100%	Soil runoff.	
			TT = % re-	Percent (%) Removal	Removal Ratio	Removal Ratio	Removal Ratio		
Total Organic Carbon, %	Yes	NA	moval or Re- moval Ratio	52 - 72 (25-45 required)	1.0 - 1.22	1.04 (Lowest Ratio RAA) 0.95 - 1.22	1.12 (Lowest Ratio RAA) 1.0 - 2.22	Naturally present in the environment	
INORGANIC CONTAMIN	ANTS				Highest Result (I	Range of Results)			
Barium, ppm	Yes	2	2	0.035 (0.017 - 0.035)	0.013	0.064	0.10	Discharge of drilling wastes; dis- charge from metal refineries; erosion of natural deposits.	
Bromate, ppb	Yes	0	10	ND	NA	2.3 (highest RAA) (1.5 - 3.7)	NA	By-product of drinking water disinfect tion.	
Chromium, ppb	Yes	100	100	ND	ND	3.2	ND	Discharge from steel and pulp mills; erosion of natural deposits.	
Fluoride, ppm	Yes	4	4	0.10 (0.07 - 0.10)	0.112	ND	ND	Erosion of natural deposits.	
Nickel, ppb	NA	NA	NA	3.4 (1.8 - 3.4)	ND	ND	ND	Erosion of natural deposits.	
Nitrate, ppm	Yes	10	10	3.8 (0.55 - 3.8)	0.32	1 (0.07 - 1)	0.35 (0.25 - 0.35)	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion natural deposits.	
ORGANIC CONTAMINANTS				Highes	t Result				
Methyl tert-butyl ether, ppb	Yes	NA	70	ND	0.16	ND	ND	By-products of industrial petroleum production.	
					DISTRIBUTION S				
PRIMARY CONTAMINANTS	Compliance Achieved	MCLG	MCL		LODI PWS ID NJ0231001			TYPICAL SOURCE	
MICROBIOLOGICAL COI	NTAMINANT	S			Highest Mo				
Total Coliform Bacteria, %	No*	0	5% of monthly samples are positive	7.1% (4 out of 56 samples Total Coliform Positive)			Naturally present in the environment		
DISINFECTION BYPROD	UCTS				Highest LRAA and	d Range of Results	i		
Haloacetic Acids (HAA5), ppb	Yes	NA	60					By-product of drinking water disinfe- tion.	
Total Trihalomethanes (TTHM), ppb	Yes	NA	80	59 (22 - 87)				By-product of drinking water disinfection.	
Some people who drink and may have an increas				ess of the MCL ove	r many years may	experience proble	ms with their liver	, kidneys or central nervous systems	
DISINFECTANTS MRDLG MRDL			Highest RAA and Range of Results						
Chlorine, ppm	Yes	4	4	1.1 (ND - 3.6)				Water additive used to control mi- crobes.	
LEAD AND COPPER		MCLG	Action Level	90th Percentile (2012 Data)					
Copper, ppm	Yes	1.3	1.3	0.064 (0 of 31 samples exceeded the Action Level)			Corrosion of household plumbing systems		
Lead, ppb	Yes	0	15	1.75 (0	0 of 31 samples ex	ceeded the Action	Level)	Corrosion of household plumbing systems	

NJDEP granted Lodi a monitoring waiver for asbestos, United Water-NJ a monitoring waiver for synthetic organic chemicals (SOCs) and Jersey City a monitoring waiver for asbestos and SOCs.

UNREGULATED CONTAMINANTS FOR WHICH EPA REQUIRES MONITORING

Contaminant	PVWC Little Falls WTP Average (Range of Results)	United Water-NJ Haworth WTP Average (Range of Results)	Jersey City MUA Jersey City WTP (2014 sampling event)	Lodi Distribution System Entry Point (2014 sampling event)	Lodi Distribution System Max Residence Time (2014 sampling event)
Chlorate, ppb	117 (93 - 140)	198 (130 – 300)	120	140	210
Chromium, ppb	ND	0.13 (ND – 0.29)	0.37	0.25	0.30
Chromium-6, ppb	0.077 (0.060 - 0.093)	0.064 (0.034 – 0.094)	ND	0.038	0.072
Strontium, ppb	86 (76 - 96)	148 (110 – 170)	110	130	170
Vanadium, ppb	ND	0.28 (ND – 0.42)	ND	ND	ND

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

SECONDARY PARAMETERS – TREATMENT PLANT EFFLUENT

Contaminant	N.J. Recommended Upper Limit	PVWC Little Falls WTP PWSID NJ1605002		NJDWSC Wanaque WTP PWSID NJ1613001		United Water-NJ Haworth WTP PWSID NJ0238001		Jersey City MUA Jersey City WTP PWSID NJ0906001	
	(RUL)	Range of Results	RUL Achieved	Result	RUL Achieved	Range of Results	RUL Achieved	Range of Results	RUL Achieved
ABS/LAS, ppb	500	ND - 180	Yes	23	Yes	ND	Yes	ND	Yes
Alkalinity, ppm	NA	40 - 98	NA	42	NA	71 - 167	NA	28 - 70	NA
Aluminum, ppb	200	9.2 - 25	Yes	35	Yes	ND - 110	Yes	ND - 108	Yes
Chloride, ppm	250	91 - 214	Yes	74	Yes	74 - 281	No	72 - 146	Yes
Color, CU	10	ND	Yes	2	Yes	3 - 4	Yes	5 - 10	Yes
Corrosivity	Non-Corrosive	Non- Corrosive	Yes	Non- Corrosive	Yes	Non- Corrosive	Yes	Non- Corrosive	Yes
Hardness (as CaCO ₃), ppm	250	84 - 200	Yes	72	Yes	104 - 201	Yes	62 - 110	Yes
Hardness (as CaCO ₃), grains/gallon	15	5 - 12	Yes	4	Yes	6 - 12	Yes	4 - 6	Yes
Iron, ppb	300	ND	Yes	12	Yes	ND	Yes	ND - 110	Yes
Manganese, ppb	50	6 - 18	Yes	ND	Yes	ND	Yes	ND - 220	No**
Odor, TON	3	5	No	ND	Yes	ND - 3	Yes	ND - 1	Yes
pH (optimum range)	6.5 to 8.5	7.8 - 8.1	Yes	8.31	Yes	7.79 - 8.33	Yes	6.17 - 8.35	No
Sodium, ppm	50	47 - 171	No*	40	Yes	46 - 191	No*	36	Yes
Sulfate, ppm	250	40 - 104	Yes	10	Yes	12	Yes	10	Yes
Total Dissolved Solids, ppm	500	275 - 560	No	198	Yes	227 - 626	No	157 - 322	Yes
Zinc, ppb	5,000	2 - 8	Yes	ND	Yes	ND	Yes	ND - 30	Yes

* PVWC and United Water-NJ's FINISHED WATER EXCEEDS SODIUM RUL

PVWC and United Water's finished water were above New Jersey's Recommended Upper Limit (RUL) of 50 ppm for sodium in 2014. Possible sources of sodium include natural soil runoff, roadway salt runoff, upstream wastewater treatment plants, and a contribution coming from chemicals used in the water treatment process. For healthy individuals the sodium intake from water is not important, because a much greater intake of sodium takes place from salt in the diet. However, sodium levels above the recommended upper limit may be a concern to individuals on a sodium-restricted diet. If you have any concerns please contact your health care provider.

** JERSEY CITY'S FINISHED WATER EXCEEDS MANGANESE RUL

Jersey City finished water was above New Jersey's Recommended Upper Limit (RUL) of 50 ppb for manganese in 2014. The RUL for manganese is based on staining of laundry. Manganese is an essential nutrient, and toxicity is not expected from high levels which would be encountered in drinking water.

DISTRIBUTION SYSTEM RESULTS – SECONDARY CONTAMINANTS

Contaminant	RUL	Annual Average	Range	RUL Achieved	
Manganese, ppb	50	6	2 - 13	Yes	

MONITORED CONTAMINANTS NOT DETECTED IN 2014

Little Falls WTP Effluent	Antimony, Arsenic, Beryllium, Bromate, Cadmium, Chromium, Combined Uranium, Cyanide, Dioxin, Gross Alpha (Including Radon & Uranium), Iron, Mercury, Perchlorate, Radium-226, Radium-228, Selenium, Silver, Thallium, and Volatile Organic Compounds				
Lodi Distribution System	E. coli bacteria, Iron				

DEFINITIONS of TERMS and ACRONYMS

ABS/LAS: Alkylbenzene Sulfonate and Linear Alkylbenzene Sulfonate (surfactants)

<u>AL</u>: Action Level; the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

CU: Color unit

CDC: United States Centers for Disease Control and Prevention

Disinfection By-product Precursors: A common source is naturally-occurring organic material in surface water. Disinfection by-products are formed when the disinfectants (usually chlorine) used to kill pathogens react with dissolved organic material (DBP precursors) present in surface water.

EPA: United States Environmental Protection Agency

HAA5: Haloacetic Acids (sum of five compounds)

Inorganic Contaminants: Contaminants such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming. These contaminants may be present in source water. **LRAA:** Locational running annual average

MCL: Maximum Contaminant Level; the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG: Maximum Contaminant Level Goal; the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

<u>Microbial Contaminants/Pathogens</u>: Disease-causing organisms such as bacteria, protozoa, and viruses, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife. Common sources are animal and human fecal wastes. These contaminants may be present in source water.

MRDL: Maximum Residual Disinfectant Level; the highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG: Maximum Residual Disinfectant Level Goal; the level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLG's do not reflect the benefits of the use of disinfectants to control microbial contamination.

NA: Not applicable ND: Not detected above minimum reporting level.

NJDEP: New Jersey Department of Environmental Protection

NJDWSC: North Jersey District Water Supply Commission

NTU: Nephelometric Turbidity Unit

Nutrients: Compounds, minerals and elements that aid growth, which can be either naturally occurring or man-made. Examples include nitrogen and phosphorus.

Organic Contaminants/Volatile Organic Compounds: Compounds containing carbon, including synthetic and volatile organic chemicals, which are products or by-products of industrial processes or petroleum production. They are typically used as solvents, degreasers, and gasoline components. These compounds may be present in source water as a result of releases from gas stations, fuel storage tanks, industrial facilities, stormwater runoff, and other sources. Examples include benzene, methyl tertiary butyl ether (MTBE), and vinyl chloride. **Pesticides (Herbicides, Insecticides, Fungicides, and Rodenticides)**: Man-made chemicals used to control pests, weeds, and fungus. Common sources include manufacturing centers of pesticides, and where they are used in agricultural, industrial, commercial, and residential environments. Examples include herbicides such as atrazine, and insecticides such as chlordane.

ppb: parts per billion (approximately equal to micrograms per liter)

ppm: parts per million (approximately equal to milligrams per liter)

PWS ID: Public Water System Identification

<u>PVWC</u>: Passaic Valley Water Commission

RAA: Running annual average

<u>Radiological Contaminants/Radionuclides</u>: Radioactive substances that are both naturally occurring and man-made; may be present in source water naturally or as a result of oil and gas production and mining activities. Examples include radium, radon and uranium.

Radon: Colorless, odorless, cancer-causing gas that occurs naturally in the environment.

<u>RUL</u>: Recommended Upper Limit; the highest level of a constituent of drinking water that is recommended in order to protect aesthetic quality.

<u>RUL Achieved</u>: A "YES" entry indicates the State-recommended upper limit <u>was not</u> exceeded. A "NO" entry indicates the State-recommended upper limit <u>was</u> exceeded.

TON: Threshold Odor Number

<u>TT</u>: Treatment Technique; a required process intended to reduce the level of a contaminant in drinking water.

<u>TTHM</u>: Total Trihalomethanes (sum of four compounds)

Turbidity: Turbidity is a measure of the cloudiness of the water, and is monitored as an indicator of water quality. High turbidity can hinder the effectiveness of disinfectants.

ADDITIONAL INFORMATIONAL RESOURCES

PVWC website: www.pvwc.com

EPA Drinking Water website: www.epa.gov/drink

NJDEP Water Supply website: www.nj.gov/dep/watersupply

American Water Works Association (AWWA) website: www.awwa.org

PVWC Customer Service Department: 973-340-4300 EPA Safe Drinking Water Hotline: 800-426-4791 NJDEP Bureau of Safe Drinking Water: 609-292-5550 AWWA New Jersey Section website: www.njawwa.org

@PVWC

IMPORTANT INFORMATION ABOUT LEAD IN YOUR DRINKING WATER

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Passaic Valley Water Commission is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at 800-426-4791 or at http://www.epa.gov/safewater/lead.

HEALTH EFFECTS OF LEAD

Lead can cause serious health problems if too much enters your body from drinking water or other sources. It can cause damage to the brain and kidneys, and can interfere with the production of red blood cells that carry oxygen to all parts of your body. The greatest risk of lead exposure is to infants, young children, and pregnant women. Scientists have linked the effects of lead on the brain with lowered IQ in children. Adults with kidney problems and high blood pressure can be affected by low levels of lead more than healthy adults. Lead is stored in the bones and can be released from them later in life. During pregnancy, the child receives lead from the mother's bones, which may affect brain development.

SOURCES OF LEAD

Lead is a common metal found in the environment. Drinking water is one possible source of lead exposure. The main sources of lead exposure are lead-based paint and lead-contaminated dust or soil, and some plumbing materials. In addition, lead can be found in certain types of pottery, pewter, brass plumbing fixtures, food, and cosmetics. Other sources include exposure in the work place and exposure from certain hobbies (lead can be carried on clothing or shoes). Lead is found in some toys, some playground equipment, and some children's metal jewelry.

Lead is not present in the water supplied to you. When water has been in contact, for several hours or more, with premise plumbing or service lines that contain lead, the lead may dissolve into the drinking water. This means the first water drawn from the tap in the morning, or later in the afternoon after returning from work or school, can contain fairly high levels of lead. Homes built before 1988 are more likely to have plumbing containing lead. New homes may also have lead; even "lead-free" plumbing may contain some lead. Brass faucets, fittings, and valves, including those advertised as "leadfree," may contribute lead to drinking water. The Reduction of Lead in Drinking Water Act of 2011, which went into effect on January 4, 2014, changed the definition of "lead-free" from not more than 8% to a weighted average of not more than 0.25% lead when used with respect to the wetted surfaces of pipes, pipe fittings, plumbing fittings, and fixtures. Visit the NSF website at www.nsf.org to learn more about lead-containing plumbing fixtures.

EPA estimates that 10 to 20 percent of a person's potential exposure to lead may come from drinking water. Infants who consume mostly formula mixed with lead-containing water can receive 40 to 60 percent of their exposure to lead from drinking water. Don't forget about other sources of lead such as lead paint, lead dust, and lead in soil. Wash your children's hands and toys often as they can come into contact with dirt and dust containing lead.

STEPS YOU CAN TAKE TO REDUCE YOUR EXPOSURE TO LEAD IN YOUR WATER

1. Run your water to flush out lead. Run your cold water for 30 seconds to 2 minutes or until it becomes cold or reaches a steady temperature before using it for drinking or cooking, if it hasn't been used for several hours. This flushes lead-containing water from the pipes. Flushing usually uses less than one or two gallons of water and costs less than 30 cents per month.

2. Use cold water for cooking and preparing baby formula. Do not cook with or drink water from the hot water tap; lead dissolves more easily into hot water. Do not use water from the hot water tap to make baby formula.

3. Do not boil water to remove lead. Boiling water will not reduce lead.

4. Look for alternative sources or treatment of water. You may want to consider purchasing bottled water or a water filter. If purchasing a water filter, read the package to be sure the filter is approved to reduce lead. You can also contact NSF International at 800-NSF-8010 or visit their website at <u>www.nsf.org</u> for information on performance standards for water filters. Be sure to maintain and replace a filter device in accordance with the manufacturer's instructions to protect water quality.

5. Test your water for lead. Call PVWC at 973-340-4300 to find out how to get your water tested for lead, or for a list of local laboratories that have been certified for testing lead.

6. Get your child's blood tested. Contact your local health department or healthcare provider to find out how you can get your child tested for lead if you are concerned about exposure. Your family doctor or pediatrician can perform a blood test for lead and provide you with information about the health effects of lead.

7. Identify and replace plumbing fixtures containing lead. A licensed plumber can check to see if your home's plumbing contains lead solder, lead pipes, or pipe fittings that contain lead. Your local building/code department can provide you with information about building permit records that should contain the names of plumbing contractors who plumbed your home.

8. Find out whether your service line is made of lead. PVWC maintains records of the materials, such as the water mains, located in the distribution system. Contact our Customer Service Department at 973-340-4300 for service line materials records.

You should also determine whether or not the service line that connects your home or apartment to the water main is made of lead. The best way to determine if your service line is made of lead is by either hiring a licensed plumber to inspect the line or by contacting the plumbing contractor who installed the line. You can identify the plumbing contractor by checking the city's record of building permits which should be maintained in the files at your local building department.

FOR MORE INFORMATION

For more information on reducing lead exposure around your home/building and the health effects of lead visit EPA's resources or contact your health care provider.

EPA's Safe Drinking Water Hotline: 800-426-4791

National Lead Information Center: 800-424-LEAD (5323)

EPA Websites: www.epa.gov/lead http://water.epa.gov/drink/info/lead

If you need additional information regarding lead testing of your water, or would like additional copies of this brochure please contact PVWC at 973-340-4300, <u>customerservice@pvwc.com</u> or visit our website <u>www.pvwc.com</u>.

Passaic Valley Water Commission 1525 Main Avenue • P.O. Box 230 Clifton, NJ 07011

This report contains information about your drinking water. If you do not understand it, please have someone translate it for you.

Este informe contiene informacion muy importante sobre su agua beber. Traduzcalo o hable con alguien que lo entienda bien.

આ અવેવાલ માં તમારા પોવાના પાછી વિષે આગત્ય ની ભાગમરી આપવામાં આવી દેવ અનેનો ચનુવાદ કરો અધ્યતા જેને સમજણ ૫ડતી હોય તેની સાથે વાત કરો

للعلومات في هذا التقرير تحتوى على معلومات مهمة عن مياة الشرب التي تشريها. من فضلك اذا لم تفهم هذة للعلومات اطلب من يترجمها لك.

LO

Chrystal A. Cleaves, President, Paterson Rigo Sanchez, Vice President, Passaic Menachem Bazian, Treasurer, Passaic Thomas P. DeVita, Secretary, Clifton Russell Graddy, Commissioner, Paterson Gloria Kolodziej, Commissioner, Clifton Jeffrey Levine, Commissioner, Paterson

Dear Passaic Valley Water Commission Consumer,

In demonstration of our commitment to you, our consumer, Passaic Valley Water Commission (PVWC) is pleased to present our Annual Water Quality Report. This report provides an overview of the high-quality drinking water provided to you during 2014.

Since our inception in 1927, PVWC has been, and continues to be, committed to providing drinking water to the citizens, businesses and industries of northeast New Jersey, at the highest quality, service and reliability, all at a competitive price. PVWC maintains a 50-year strategic capital improvement program that is used to identify necessary investments to our above-ground infrastructure including treatment facilities, pumping and storage systems, as well as for our buried infrastructure such as transmission mains, piping and valves. Strategic capital improvements are key to maintaining the financial viability and long-term sustainability of our system for the ultimate protection of public health and public safety.

PVWC is planning to implement a large, multi-phased, capital improvement project, mandated by the United States Environmental Protection Agency. This project includes replacement of our open drinking water storage reservoirs with above-ground drinking water storage tanks. This infrastructure improvement project is anticipated to cost on the order of \$135 million and is anticipated to be completed over the next 10 years. This project will further enhance the quality of the delivered water and the reliability and resiliency of the overall system.

If you have any questions related to this report, water quality, water pressure, billing, construction projects or other inquiries, please contact our Customer Service Department at 973-340-4300. Our hours of operation, including the walk-up payment window, are Monday through Friday, excluding State holidays, from 7:30 a.m. to 6:00 p.m.; our phone lines are open an extra half hour until 6:30 p.m. Or contact us via email at <u>customerservice@pwc.com</u>. Additional information about PVWC, including important news and alerts, can be found on our website at <u>www.pvwc.com</u>. For emergencies, call 973-340-4300, 24 hours per day/7 days per week.

Sincerely, Chrystal A. Cleaves, Paterson President, PVWC Board of Commissioners PRSRT STD U.S. POSTAGE PAID PERMIT NO. 1 ZIP CODE 14304